Autores: Ghose, KK; Brown, JJ; Frankcombe, TJ; Page, A; Bayon, A

Review; Early Access.
Wiley Interdiscip. Rev. Energy Environ.. vol: . page: 2041-8396.
Fecha: 2023 MAY 8. 2023.
Doi: 10.1002/wene.476.

Water splitting (WS) driven by solar energy is considered as a promising strategy to produce renewable hydrogen from water with minimal environmental impact. Realization of large-scale hydrogen production by this approach requires cost-effective, efficient and stable materials to drive the WS reaction. Perovskite oxides have recently attracted widespread attention in WS applications due to their unique structural features, such as compositional and structural flexibility allowing them to achieve desired sunlight absorption capability, precise control of electrocatalytic and redox activity to drive the chemical reaction, tuneable bandgaps and band edges, and earth-abundance. However, perovskite oxides contain a large family of metal oxides and experimental exploration of novel perovskites without a priori knowledge of their properties could be costly and time-consuming. First-principles approaches such as density functional theory (DFT) are a useful and cost-effective alternative towards this end. In this review, DFT-based calculations for accurate prediction of the critical properties of ABO(3) perovskite oxides relevant to WS processes are surveyed. Structural, electronic, optical, surface, and thermal properties are grouped according to their relevance to photocatalytic (PC), electrochemical (EC), photo-electrochemical (PEC), and solar thermal water splitting (STWS) processes. The challenges associated with the choice of exchange-correlation (XC) functional in DFT methods for precise prediction of these properties are discussed and specific XC functionals have been recommended where experimental comparisons are possible.This article is categorized under:Sustainable Energy > Solar EnergyEmerging Technologies > Hydrogen and Fuel CellsEmerging Technologies > Materials.