Autores: Mastronardo, E; Sanchez, M; Gonzalez-Aguilar, J; Coronado, JM

J. Energy Storage. vol: 57. page: 2352-152X.
Fecha: JAN. 2023.
Doi: 10.1016/j.est.2022.106226.

Thermodynamic cycles requiring high operating temperatures (>= 750 degrees C up to 1200 degrees C) are currently being explored to improve the sun-to-electricity conversion efficiency of Concentrating Solar Power (CSP) plants. This is calling for the design of new efficient high-temperature (>= 750 degrees C) Thermochemical Energy Storage (TCES) systems, which are fundamental for supplying power on demand during off-sun periods. Recently, Fe-doped CaMnO3 oxides have been proposed as TCES candidate materials, and the determination of their thermody-namics properties via thermogravimetric (TG) analysis allowed evaluation of their heat storage capacity at a very small scale (mg scale). A 10 % Fe-doped CaMnO3 composition (CaMn0.9Fe0.1O3-delta – CMF91) emerged as optimum candidate material for TCES application due to its large heat storage capacity complemented by enhanced thermal stability over multiple oxidation/reduction cycles. To advance in the thermal characterization of these materials at a multigram scale, here we carried out bench-scale reactor tests using CMF91 under conditions considered representative of future CSP plants. The redox-active material has been extruded in the form of porous pellets through a simple production method that required the use of carboxymethylcellulose as a removable binder and water. With the bench-scale reactor tests, the CMF91 pellets showed fully reversible reduction-oxidation in cycles between 500 and 1100 degrees C under relevant operating pO(2) conditions without any deterioration of the pellet’s structural integrity. Remarkably, the material exhibited the same delta(T, pO(2)) profile at this significantly larger scale (similar to 40 g) than the one derived from thermodynamics. Nevertheless, slight differences in oxygen release/uptake profiles between cooling and heating branches can be tracked down to an excess heat generation in the perovskite bed not efficiently extracted by the carrier gas. These results demonstrate that CMF91 oxide is ideally suited for thermal energy storage applications with a large total (thermochemical and sensible) heat storage capacity (similar to 916 kJ/kgABO3 or similar to 400 kWh/m3) and good scalability.