Velez Marisela
Teléfono: 915854802
Teléfono interno: 437462
Group: Biofuncionalización de Superficies
Despacho: 116
Lab: 115


Obtained her degree in Biology (Biochemistry) by the Universidad Autónoma de Madrid (UAM) and her PhD in Biophysics at the University of Michigan, Ann Arbor, developing a biophysical method based on polarized fluorescence to study the rotational dynamics of membrane proteins in living cells. In 1989 she joined the “Instituto de Química Física Rocasolano”, Madrid, as a postdoc, to study physical properties of biological model membranes using time resolved fluorescence spectroscopy. She then moved to work on the application of Atomic Force Microscope ( AFM) to biological materials at the “Dpto. de Física de la Materia Condensada” (UAM), focusing on visualizing at the nanoscale biological surface processes in aqueous media. After temporary contracts in different institutions working on characterization of enzymatically modified electrodes and on membrane fluorescence spectroscopy, she returned to the UAM in November 2001 with and Ramon y Cajal contract, to start her independent group focusing on the study a bacterial cytoskeletal protein, FtsZ, essential for cell división. Her group pioneered, world wide, the use of AFM to characterize the structure and dynamics of individual filaments of this cytoskeletal protein in aqueous media. These filaments are much smaller than the corresponding eukaryotic cytoskeletal analogues, therefore inaccessible by optical microscopy. We were able to obtain dynamic information at unprecedented space resolution. This high quality data paved the way to a close collaboration with theoretical physicists that modelled our observations to extract information about location and relative strength of interactions between monomers that govern the observed in vitro behavior. She is currently at the “Instituto de Catálisis y Petroleoquímica” (ICP-CSIC) in charge of the Scanning Probe Facilities at this Research Institute and works in close collaboration with other groups in the Biocatalysis department studying membrane redox proteins such as membrane hydrogenases and other redox proteins from the respiratory chain.
In 2003 I was co-founder of the Biophysics Master at the UAM, which was the first of its kind offered in Spanish Universities. She actively participates in organizing courses and summer schools directed towards providing interdisciplinary training to students to address the study of biological surfaces using different techniques and approaches.


1) Fragogeorgi, EA; Rouchota, M; Georgiou, M ; Velez, M ; Bouziotis, P ; Loudos, G “In vivo imaging techniques for bone tissue engineering”J of Tissue Engineering, 2019, 10, DOI: 10.1177/2041731419854586

2) Sobrinos-Sanguino, M.; Velez, M.; Richter, R.P.; Rivas, G. Reversible Membrane Tethering by ZipA Determines FtsZ Polymerization in Two and Three Dimensions 2019, Biochemistry, 58,38 4003-4015

3) Marquez,I; Diaz-Haro, G ; Velez, M. “Surface Orientation and Binding Strength Modulate Shape of FtsZ on Lipid Surfaces” Int J of Mol Sciences 2019, 20(10), 2545

4) Mateos-Gil,P.; Tarazona,P.; Vélez,M. “Bacterial Cell Division: Modeling FtsZ Assembly and Force Generation from Single Filament Experimental Data”, FEMS Microbiology Reviews 2019, 43, pp 73-87.

5) Partouche, D., Malabirade, A., Bizien, T., Velez, M., Trepout, S., Marco, S., Militello, V., Sandt, C., Wien, F., and Arluison, V. (2018) Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro. Methods Mol Biol 1737, 321-340 ( Book chapter)

6) Milioni ,M., Tsortos, A., Velez ,M., and Gizeli, E. “Extracting the Shape and Size of Biomolecules Attached to a Surface as Suspended Discrete Nanoparticles” (2017) Anal. Chem., 89 (7), pp 4198–4203 10.1021/acs.analchem.7b00206

7) Márquez ,I., Mateos-Gil,P., Shin, Y., Lagos ,R., Monasterio, O, Vélez, M. “Mutations on FtsZ lateral helix H3 that disrupt cell viability hamper reorganization of polymers on lipid surfaces“ (2017) BBA – Biomembranes 1859, 1815–1827

8) Malabirade,A.; Morgado-Brajones,J.; Trépout, S., Wien,F., Marquez, I., Seguin, J.; Marco, S., Velez,M., & Arluison, V. “Membrane association of the bacterial riboregulator Hfq and functional perspectives” (2017) Scientific Reports| 7: 10724 | DOI:10.1038/s41598-017-11157-5
We demonstrate, for the first time, using different techniques, including AFM, the association of the bacterial protein Hfq with lipid membranes.

9) Mateos-Gil, P., Tsortos,A., Vélez, M. and Gizeli, E. “ Monitoring structural changes in intrinsically disordered proteins using QCM-D: application to the bacterial cell division protein ZipA” 2016 Chem. Commun, 52 , 6541-6544
We demonstrate, for the first time, that the Quartz Crystal Microbalance (QCM) can be used to detect confromation changes of proteins near a membrane.

10) Gutiérrez-Sanz, O., Natale, P., Márquez, I., Marques, M.C., Zacarias, S., Pita, M., Pereira, I.A.C., López-Montero,I., De Lacey,A.L. and Vélez, M. “ H2-Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration” 2016, Angewandte Chemie , 55, 6216-6220

11)Gutiérrez-Sanz,O, Tapia,C., Marques,M., Zacarias,S.,Vélez,M.,Pereira,I.,L. De Lacey,A. “Induction of a Proton Gradient across a Gold-Supported Biomimetic Membrane by Electroenzymatic H2 Oxidation” 2015, Angewandte Chemie Int Ed, 54, 2684–2687

12)Gutierrez-Sanz, O ; Olea, D ; Pita, M ; Batista, AP ; Alonso, A ; Pereira, MM ; Vélez, M; De Lacey, AL “Reconstitution of Respiratory Complex I on a Biomimetic Membrane Supported on Gold Electrodes” Langmuir, 2014, 30 , 9007- 9015

13) Gutiérrez-Sánchez ,C.; Olea ,D.; Marques ,M.; Fernández ,V.M.; Pereira ,I.; Vélez,M. De Lacey ,A.” Oriented Immobilization of a Membrane-Bound Hydrogenase onto an Electrode for Direct Electron Transfer” Langmuir (2011) 27, 6449- 6457
References 7, 8, 9 and 10 are a group of works related to the functional incorporation of membrane redox proteins on electrodos and their caracterization using AFM, QCM and electrochemistry.

14)González de Prado Salas,P.,Encinar,M.,Alonso,A.,Vélez,M.,Tarazona,P.“Modeling the interplay between protein and lipid aggregation in supported membranes” ChemPhysLipids 2015,185, 141-152

15) Gonzalez de Prado Salas,P., Hörger,I., Martín-García,F., Mendieta, J., Alvaro,A.,
Encinar,M., Gómez-Puertas,P., Vélez, M., and Tarazona,P. “Torsion and curvature of FtsZ” Soft Matter (2014) 10;1977- 1986

16) González de Prado Salas, P., Encinar,M., Vélez,M. and Tarazona,P “FtsZ protein on bilayer membranes: effects of specific lateral bonds “Soft Matter, 2013, 9, 6072

17) Encinar, M. ; Kralicek, A.; Martos, A.; Krupka, M.; Alonso, A.; Cid, Sa.; Rico, A.; Jiménez, M.; Vélez, M.“ Polymorphism of FtsZ filaments on lipid surfaces: role of monomer orientation” Langmuir (2013) ,29, 9436- 9446 DOI:10.1021/la401673z

18) Mateos-Gil , P.; Paez ,A.; Hörger, I, Rivas, G.; Vicente,M.; Tarazona,P. and Vélez, M. “Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ” (2012) PNAS 109 (21) 8133-8138

19) Mateos-Gil,P; Marquez, I.; López-Navajas,P.; Jiménez, M.; Rivas,G.; Mingorance, J.; Vicente,M. and Vélez,M. “ FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks” BBA – Biomembranes (2012) 1818: 806- 813 20) Mingorance,J., Rivas, G., Vélez, M., Gómez-Puertas, P., Vicente, M..” Strong FtsZ is with the force: mechanisms to constrict bacteria” Trends in Microbiology, 2010, 18(8) pp. 348 – 356