Authors: Munoz-Batista, MJ; Eslava-Castillo, AM; Kubacka, A; Fernandez-Garcia, M

Appl. Catal. B-Environ.. vol: 225. page: 0926-3373.
Date: jun-05. 2018.
Doi: 10.1016/j.apcatb.2017.11.073.

This work describes a study carried out to construct and determine a kinetic formalism for the gas-phase degradation of 2-propanol using a combined thermo-photo based process. Outstanding catalytic performance was observed for a composite ceria-titania system with respect its parent ceria and titania reference systems. Thermo photo as well as parallel photo- and thermal-alone experiments were carried out to interpret catalytic behavior. The kinetic experiments were conducted using a continuous flow reactor free of internal and external mass-heat transfer and designed using a Box-Behnken formalism. The kinetic expression developed for the thermo-photo degradation process explicitly includes the effect of the photon absorption in the reaction rate and leads to a mathematical formula with two components having different physico-chemical nature. This fact is used to settle down a fitting procedure using two steps (two separated experimental sets of data concerning temperature, light intensity, oxygen, water and/or 2-propanol concentrations) with, respectively, four and three parameters. The kinetic formalism was validated by fitting the experimental data from these two independent experiments, rendering a good agreement with the model predictions. The parameters coming from the kinetic modelling allow an interpretation of the catalytic properties of the ceria-titania catalyst, quantifying separately its enhanced performance (with respect to its parent systems) in the photonic and thermal components for the process. The procedure is applicable to a wide variety of thermo-photo processes in order to contribute to the understanding of their physical roots..