Authors: Palomo, JM

Chem. Commun.. vol: 55. page: 1359-7345.
Date: AUG 21. 2019.
Doi: 10.1039/c9cc04944d.

In recent years, nanoscience and nanotechnology have brought a great revolution in different areas. In particular, the synthesis of transition metal nanoparticles has been of great relevance for their use in areas such as biomedicine, antimicrobial properties or catalytic applications for chemical synthesis. Recently, an innovative straightforward and very efficient synthesis of these nanoparticles by simply using enzymes as inductors in aqueous media has been described. This represents a very green alternative to the different methodologies described in the literature for metal nanoparticles preparation where harsh conditions are necessary. In this review the most recent advances in the synthesis of metal nanoparticles by this green technology, explaining the synthetic mechanism, the role of the enzyme in the formation of the nanoparticles and the effect on the final properties of these nanoparticles, are summarised. The application of these novel metal nanoparticles-enzyme hybrids in synthetic chemistry as heterogeneous catalysts with metal or dual (enzymatic and metallic) activity and their capacity as environmental and antimicrobial agents have also been discussed..