The  Bioelectrocatalysis Group of the ICP was started by Prof. Victor M. Fernández in the mid 80s. Since then the main research goals of the group have been the study and characterization of redox enzymes and their interfaces with electroactive surfaces, as well as the applications of bioelectrodes.

Research lines

  • Structure/function relationship studies of redox metalloenzymes
  • Development of strategies for oriented and stable immobilization of redox enzymes on electrodes for applications in biofuel cells, biosensors, hydrogen production or cofactor regeneration.
  • Development and characterization of nano-structured electrodes and the study of the integration of nano-materials (gold/magnetic nanoparticles, carbon nanotubes, graphene) with biocatalysts.
  • Development of photocatalysts and photoelectrocatalysts based on redox enzymes immobilized on inorganic semiconductors.
  • Reconstitution of membrane enzymes on electrodes modified with biomimetic membranes.


Jefa/e del Grupo

Antonio López de Lacey (Investigador Científico)

Personal del Grupo

Marcos Pita Martínez (Científico Titular)

Melisa del Barrio Redondo (Postdoctoral)

Julia Álvarez Malmagro (Postdoctoral)

Gabriel García Molina (Predoctoral)

Gabriel Luna López (Predoctoral)

Carina Felix Figueiredo (Predoctoral)

Bioelectrocatalisis grupo


  • “Mass‐transfer independent long‐term implantable biosensors”, IMPLANTSENS, EU, ref. 813006-H2020-MSCA-ITN-2018. 2019-2023.
  • “Nueva generación de materiales multifuncionales para fotosíntesis artificial”. Comunidad de Madrid,  ref. P2018/NMT4367, 2019-2022.
  • “Estrategias bioelectrocatalíticas para la producción y conversión de vectores energéticos”. Ministerio de Ciencia, Innovación y Universidades. Retos-2018, ref RTI2018-095090-B-I00. 2019-2021.


  • S. Alonso et al. “Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis”. Nature Catal. In press (2019) .
  • C. Jarne, L. Paul, J. C. Conesa, S. Shleev, A. L. De Lacey, M. Pita. “Underpotential photoelectroxidation of wáter by SnS2-laccase co-catalysts on nanostructured electrodes with only visible light irradiation. ChemElectroChem 6, 2755-2761 (2019).
  • G. Pankratova, D. Pankratov, C. Di Bari, A. Goñi-Arteaga, M. D. Toscano, Q. Chi, M. Pita, L. Gorton, A. L. De Lacey. “Three-dimensional graphene matrix-supported and tylakoid membrane-based high-performance bioelectrochemical solar cell”. ACS Appl. Energy Mater. 1, 319-323 (2018).
  • C. Di Bari, N. Mano, S. Shleev, M. Pita, A. L. De Lacey. “Halides inhibition of multicopper oxidases studied by FTIR spectroelectrochemistry using azide as an active infrared probe”. J. Biol. Inorg. Chem. 22, 1179-1186 (2017).
  • C. Tapia, S. S. Shleev, J. C. Conesa, A. L. De Lacey, M. Pita. “Laccase-catalyzed bioelectrochemical oxidation of water assisted with visible light”. ACS Catal. 7, 4881-4889 (2017).
  • M. C. Marques, C. Tapia, O. Gutiérrez-Sanz, A. R. Ramos, K. L. Keller, J. D. Wall, A. L. De Lacey, P. M. Matias, I. A. C. Pereira. “The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis”. Nat. Chem. Biol. 13, 544-550 (2017).
  • C. Tapia, S. Zacarias, I. A. C. Pereira, J. C. Conesa, M. Pita,, A. L. De Lacey, “In situ determination of photobioproduction of H2 by In2S3-[NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough using only visible light”. ACS Catal. 6, 5691-5698 (2016).
  • O. Gutiérrez-Sanz, P. Natale, I. Márquez, M. C. Marques, S. Zacarías, M. Pita, I. A. C. Pereira, I. López-Montero, A. L. De Lacey. M. Vélez. “H2-fueled ATP synthesis on an electrode: mimicking cellular respiration”. Angew. Chem. Int. Ed. 55, 6216-6220 (2016)
  • C. Di Bari, A. Goñi-Urtiaga, M. Pita, S. Shleev, M. D. Toscano, R. Sainz, A. L. De Lacey, “Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction”. Electrochim. Acta 191, 500-509 (2016).
  • O. Gutiérrez-Sanz, C. Tapia, M. C. Marques, S. Zacarías, M. Vélez, I. A. C. Pereira, A. L. De Lacey.“Induction of a proton gradient across a gold-supported biomimetic membrane by electroenzymatic H2 oxidation”. Angew. Chem. Int. Ed. 54, 2684-2687 (2015).
  • M. Pita, D. M. Mate, D. Gonzalez-Perez, S. Shleev, V. M. Fernandez, M. Alcalde, A. L. De Lacey. “Bioelectrochemical oxidation of water“. J, Am. Chem. Soc. 136, 5892-5895 (2014).